Astérisque - Numéro 371 : Relative p-adic Hodge theory (Revue)
- Livres mathématiques
- Kiran S. Kedlaya, Ruochuan Liu
Date de parution
30/06/2015
Format
Revue
Editeur
Société mathématique de France
We describe a new approach to relative p-adic Hodge theory based on systematic use of Witt vector constructions and nonar-chimedean analytic geometry in the style of both Berkovich and Huber. We give a thorough development of Phi-modules over a relative Robba ring associated to a perfect Banach ring of characteristic p, including the relationship between these objects and étale Zp-local systems and Qp-local systems on the algebraic and analytic spaces associated to the base ring, and the relationship between (pro-)étale cohomology and Phi-cohomology. We also make a critical link to mixed characteristic by exhibiting an equivalence of tensor categories between the finite étale algebras over an arbitrary perfect Banach algebra over a nontrivially normed complete field of characteristic p and the finite étale algebras over a corresponding Banach Qp-algebra. This recovers the homeomorphism between the absolute Galois groups of Fp((Pi)) and Qp(µpInfini) given by the field of norms construction of Fontaine and Wintenberger, as well as generalizations considered by Andreatta, Brinon, Faltings, Gabber, Ramero, Scholl, and most recently Scholze. Using Huber's formalism of adic spaces and Scholze's formalism of perfectoid spaces, we globalize the constructions to give several descriptions of the étale local systems on analytic spaces over p-adic fields. One of these descriptions uses a relative version of the Fargues-Fontaine curve.
Auteur(s) | Kiran S. Kedlaya, Ruochuan Liu |
---|---|
Rayon | Livre|Savoirs|Sciences et techniques|Mathématiques |
Libellé | Astérisque - Numéro 371 : Relative p-adic Hodge theory (Revue) |
Catégorie produits | sciences_pures |
Date de parution | 30/06/2015 |
Nombre de pages | 239 |
ISBN | 978-2-85629-807-7 |
Dimensions (cm) | 18 x 24 x 1.5 |
Sciences pures | Mathématiques |
EAN | 9782856298077 |
Titre de l'œuvre | Astérisque - Numéro 371 |
Format | Revue |
Editeur | Société mathématique de France |
Des millions de
références en vente
Cumulez des Tickets
retrait gratuit en magasin
Tous vos produits
à prix E.LECLERC
Paiements
100% sécurisés