Astérisque - Numéro 371 : Relative p-adic Hodge theory (Revue)

Astérisque - Numéro 371 : Relative p-adic Hodge theory (Revue)

Date de parution

30/06/2015

Format

Revue

Editeur

Société mathématique de France

We describe a new approach to relative p-adic Hodge theory based on systematic use of Witt vector constructions and nonar-chimedean analytic geometry in the style of both Berkovich and Huber. We give a thorough development of Phi-modules over a relative Robba ring associated to a perfect Banach ring of characteristic p, including the relationship between these objects and étale Zp-local systems and Qp-local systems on the algebraic and analytic spaces associated to the base ring, and the relationship between (pro-)étale cohomology and Phi-cohomology. We also make a critical link to mixed characteristic by exhibiting an equivalence of tensor categories between the finite étale algebras over an arbitrary perfect Banach algebra over a nontrivially normed complete field of characteristic p and the finite étale algebras over a corresponding Banach Qp-algebra. This recovers the homeomorphism between the absolute Galois groups of Fp((Pi)) and QppInfini) given by the field of norms construction of Fontaine and Wintenberger, as well as generalizations considered by Andreatta, Brinon, Faltings, Gabber, Ramero, Scholl, and most recently Scholze. Using Huber's formalism of adic spaces and Scholze's formalism of perfectoid spaces, we globalize the constructions to give several descriptions of the étale local systems on analytic spaces over p-adic fields. One of these descriptions uses a relative version of the Fargues-Fontaine curve.

Caractéristiques
Auteur(s) Kiran S. Kedlaya, Ruochuan Liu
Rayon Livre|Savoirs|Sciences et techniques|Mathématiques
Libellé Astérisque - Numéro 371 : Relative p-adic Hodge theory (Revue)
Catégorie produits sciences_pures
Date de parution 30/06/2015
Nombre de pages 239
ISBN 978-2-85629-807-7
Dimensions (cm) 18 x 24 x 1.5
Sciences pures Mathématiques
EAN 9782856298077
Titre de l'œuvre Astérisque - Numéro 371
Format Revue
Editeur Société mathématique de France

Des millions de
références en vente


Cumulez des Tickets
retrait gratuit en magasin


Tous vos produits
à prix E.LECLERC


Paiements
100% sécurisés

Options de livraisons du produit

Indisponible

1