infini au carrefour de la philosophie et des mathématiques (L') (Broché)

Passer le carrousel d'images

Date de parution

25/04/2000

Format

Broché

Editeur

Ellipses

Carrefour : point de rencontre de chemins venus d'ailleurs.
Chemins des démarches philosophiques…
Chemins des démarches mathématiques…
Lesquels ont rencontré les premiers la question de l'infini ?
Et si les " choses " n'étaient pas ainsi séparables… ?
Le retour à l'Antiquité grecque où les mathématiques se sont constituées en science démonstrative nous donne à penser la conception des mathématiques, de la réalité et de leurs rapports – la métaphysique – qui les a nourries et qui se trouve remise en question par le travail mathématique lui-même. C'est le problème de la composition du continu et du statut de l'infini qui se trouve mis en avant, et qui trouve une première solution en mathématiques et en philosophie, – avec ce qu'il est habituel d'appeler l'éviction de l'infini chez les Grecs, exprimée par un concept négatif de l'infini, le non fini : incomplet, inachevé imparfait.
C'est dans la métaphysique du Moyen Âge, à la charnière des débats théologiques sur l'infinité de Dieu et celle du Monde, que s'élaborent les conditions d'un concept positif de l'infini dont les déterminations s'explicitent dans les grandes métaphysiques de l'Âge classique : celle de Descartes, de Spinoza et de Leibniz, en même temps que se développe l'utilisation infinitiste des procédés de quadrature hérités des Grecs. Et la grande invention du XVIIe siècle, le " calcul de l'infini " est le fait de ce métaphysicien mathématicien qu'est Leibniz, – qui avait pour projet une " Scientia infinita " et qui écrivait au Marquis de l'Hospital : " ma métaphysique est toute mathématique ". Mais quelles que soient les avancées des pratiques opératoires et les discussions mathématiques, il faut attendre la fin du XIXe siècle pour qu'un concept mathématique de l'infini soit construit. Fin des rencontres philosophie-mathématiques ? Ou l'intégration de l'héritage et nouveaux chemins…?

SOMMAIRE
Introduction : Chemins, rencontres et détermination. Chapitre 1. Les origines de la question. Chapitre 2. Élaboration philosophique d'un concept positif de l'infini. Chapitre 3. De l'élaboration du " calcul de l'infini " au concept mathématique d'infini. Conclusion : La permanence de la question du continu. Annexes. Bibliographie générale. Index des noms propres. Index des notions. Table des schémas et tableaux

Caractéristiques
Auteur(s) Jacqueline Guichard
Rayon Livre|Savoirs|Sciences et techniques|Mathématiques
Libellé infini au carrefour de la philosophie et des mathématiques (L') (Broché)
Catégorie produits sciences_pures
Date de parution 25/04/2000
Nombre de pages 208
ISBN 2-7298-7987-0
Collection IREM-Histoire des mathématiques
Distributeur Ellipses-Edition Marketing SA
Dimensions (cm) 18 x 26 x 1.4
Poids du produit 454 g
Sciences pures Mathématiques
EAN 9782729879877
Titre de l'œuvre l'infini au carrefour de la philosophie et des mathématiques
Format Broché
Editeur Ellipses
Thème CLIL SCIENCES FONDAMENTALES

Des millions de
références en vente


Cumulez des Tickets
retrait gratuit en magasin


Tous vos produits
à prix E.LECLERC


Paiements
100% sécurisés

Options de livraisons du produit

Vendu  18.55€

En stock

Options de livraison

Sélectionnez votre mode de livraison préféré

Livraison

Livraison standard  à partir de 3,50€  - Prévue le 09/08/25

Occasion - Très Bon État

Vendu par Recyclivre

4.73/5 (479)
Pays d'expédition : France
Quantité
1
1 Utilisez les boutons plus et moins ou saisissez directement la quantité désirée